Soybean Rust Update

There are no new reports of soybean rust from the South. Scouting of kudzu and volunteer soybeans is continuing. Many Southern states have planted some or all of their sentinel plots and many are emerged and in the vegetative stages of development. As of Wednesday, April 26, three sentinel plots have been planted in Sussex County. This year each sentinel plot will have two varieties, a Group III and a Group V. In the next several weeks the national soybean rust website http://sbrusa.net will get a facelift with several changes that will make it more useful. More on that later as we get closer to implementation.

Bob Mulrooney

Vegetables

Vegetable Crop Insects - Joanne Whalen, Extension IPM Specialist; jwhalen@udel.edu

Cabbage
Be sure to watch for imported cabbageworm and diamondback (DBM) larvae in early planted fields. Once DBM eggs hatch, young larvae will first mine between the upper and lower leaf surfaces before moving to the heart of the plants. Treatments should be applied when 5% of the plants are infested with larvae and before larvae move to the heart of the plants.

Peas
We are seeing an increase in aphid populations so be sure to sample for pea aphids. The cool, dry weather this spring has been favorable for aphid development. A period of warmer weather following these conditions could result in a rapid increase in populations. On small plants, you should sample for aphids by counting the number of aphids on 10 plants in 10 locations throughout a field. On larger plants, take 10 sweeps in 10 locations. As a general guideline, a treatment is recommended if you find 5-10 aphids per plant or 50 or more aphids per sweep. Be sure to check labels for application restrictions during bloom.

Melons
As soon as plants are set in the field, you should begin scouting for cucumber beetles, aphids and spider mites. We have had a few reports of aphids infesting plants in the greenhouse. As soon as plants are set in the field, be sure to check plants for aphids. You should also watch for beneficial insects as well. In some cases, they can help to crash populations. As a general guideline, a treatment should be applied for aphids when 20 percent of the plants are infested, with at least 5 aphids per leaf. Foliar treatments labeled for melon aphid control on melons include Fulfill, Lannate and Thionex. These materials should be applied before aphid populations explode. The Fulfill label states that the addition of a penetrating type spray adjuvant is recommended to provide optimum coverage and penetration. As a reminder, Actara
is no longer labeled on cucurbits. Admire, Platinum and Venom are labeled as at planting materials for aphid control. Admire Pro and Admire 2F also have a label for planthouse application for aphid control in cucurbits (Admire 2F - http://www.cdms.net/ldat/ld68H042.pdf; Admire Pro - http://www.cdms.net/ldat/ld74S007.pdf)

White Rust on Spinach Found on Delmarva - Kate Everts; Vegetable Pathologist, University of Delaware and University of Maryland; keverts@umd.edu

White rust has been found on Delmarva this spring. We are fortunate to have some additional, recently registered, fungicides to aid in management of white rust. Actigard, Kocide, Aliette, and Ridomil Gold Copper continue to be available for managing this disease. In addition, Cabrio and Quadris are registered. Both are in the FRAC group (resistance group) 11 and therefore they cannot be applied more than twice before switching to a fungicide with a different mode of action. They should never be alternated with each other. Cabrio is used at 12-16 oz/A, and research trial results indicate that it has some “back action”. Quadris is used at 6.2 to 15.4 oz/A. It also may have some “back action”, but not as much as Cabrio. A good spray program would be to apply Cabrio or Quadris two times, and then alternate a different material if weather conditions remain conducive to disease. Copper products and Actigard may cause phytotoxicity under some conditions.

Potato Cyst Nematode Found in Idaho - Bob Mulrooney; Extension Plant Pathologist; bobmul@udel.edu

Those interested in potatoes may have heard or seen reports of the detection of the potato cyst nematode in Idaho recently. This is the first time this nematode has been detected in the US. There is some confusion about the identification of this serious nematode on potato. This new detection is the potato cyst nematode, *Globodera pallida*, not to be confused with what we commonly call the golden nematode, *Globodera rostochiensis* which is also a major pest of potato and has been present in northern US potato growing areas for a long time. Both nematodes are cyst nematodes of potato and are golden so they are often lumped together and called potato cyst nematodes. In some parts of Europe and South America both occur with the same frequency. Until now only *Globodera rostochiensis* occurred in the US.

The potato cyst nematode, *Globodera pallida*, is a major pest of potato crops in cool temperate areas. It primarily affects plants within the potato family including tomatoes, eggplants, and some weeds. If left uncontrolled, nematodes can cause up to 80 percent yield loss. Scientists believe the potato cyst nematode originated in Peru and is widely distributed in potato-growing regions throughout the world. In North America, the nematode is also known to be present on the island of Newfoundland, Canada. Potato cyst nematode infestations may be associated with patches of poor growth. Affected potato plants may exhibit yellowing, wilting or death of foliage - none of which has been observed in Idaho potato fields. Early detection of pests minimizes agricultural production costs and enhances product quality and marketability. Crop rotation and the use of resistant potato cultivars and nematicides is an effective and practical means of control. The common recommendation is seven years without potatoes. The integration of these methods can be used to keep the nematode population levels below economic thresholds.

There is no sign that the quality of tubers grown in Idaho has been affected. ISDA’s early discovery of the potato cyst nematode is
credited to the department’s participation in the Cooperative Agricultural Pest Survey (CAPS), a surveillance program managed jointly by USDA’s Animal and Plant Health Inspection Service and state departments of agriculture. Idaho and all other potato-producing states conduct routine surveillance and inspections for nematodes and other pests of concern.

As a result of these survey efforts, two cysts - the size of pinheads - were found in a soil sample sent for testing at the University of Idaho. The university identified the cysts as that of the potato cyst nematode. USDA’s Agricultural Research Service confirmed the finding. This is the first time the potato cyst nematode has been found in the United States. The university has conducted more than 9,000 soil sample tests since 2003. To date, no other cysts have been found in any other Idaho samples. APHIS and ISDA scientists have isolated the origin of the cysts to two fields, totaling approximately 500 acres, on a farm in Idaho. APHIS is in the process of placing the two fields under quarantine and will conduct extensive sampling of the soil in cooperation with ISDA to determine whether additional potato cyst nematodes are present. APHIS and ISDA are also working to trace the origin of the seed that was planted in these fields.

As a result of this detection Canada is not receiving shipment of potatoes from Idaho.

Understanding FRAC Groupings Part II: Growers Guide to Understanding the DMI or SBI Fungicides (FRAC Group 3) - Andy Wyenandt; Extension Plant Pathologist, Rutgers Univeristy

The DMI (DeMethylation Inhibitors) or Sterol Biosynthesis Inhibiting (SBI) fungicides belong to FRAC group 3 which include the triazoles and imidazoles. Some of these fungicides are commonly known as Tilt (propiconazole), Nova (myclobutanil), Folicur (tebuconazole) and Procure (triflumizole). SBI work by inhibiting the biosynthesis of ergosterol, which is a major component of the plasma membrane of certain fungi and is needed for fungal growth.

Resistance by fungi to the SBI fungicides has been characterized and is generally known to be controlled by the accumulation of several independent mutations, or what is known as ‘continuous selection’ or ‘shifting’, in the fungus. This results in a situation where, in any given field population, the sensitivity to the SBI fungicide by the fungus may range from extremely high (will be controlled by fungicide) to moderate (partially sensitive) or low (mostly resistant to fungicide). This type of resistance is also known as quantitative resistance. With quantitative resistance there are different levels of resistance to the fungicide due to independent mutations, which is unlike the target mutations that occur in qualitative resistance associated with the QoI fungicides (Group 11). Because different levels of resistance to the SBI fungicide may exist in the field, the fungal population may react differently to different application rates of the SBI fungicide. Consequently, it is suggested that using a higher rate of a SBI fungicide may improve control when lower rates have failed.

For example, let’s say that a powdery mildew population on pumpkin has 25% high, 50% moderate, and 25% low sensitivity to a SBI fungicide. If fungicide is applied at the low rate, only 25% of the population (highly sensitive) may be controlled. However, if the high rate was used, 75% of the population may have been controlled. The main point here is that if low rates of SBI fungicides have been used and control seems to be weakening, bumping to a higher rate may improve control. Unfortunately, it is difficult to determine what proportion of the powdery mildew population is sensitive or not sensitive by looking at the field until you have begun spraying. The best advice - if you are using low rates and think those rates are not working like you feel they should, bump up to the high rate the next time the fungicide is sprayed, and if the high rate doesn’t work it may be safe to assume the fungal population has grown mostly resistant. Importantly, if the high rate fails, whether you bumped up to a high rate or started with one, and control does not seem adequate do not continue to use the fungicide. Recognizing if and when fungicide chemistries are failing and when fungicide resistance is developing is critical to producing successful
crops and why scouting on a regular basis, at least before and after each fungicide application, is important. Regular scouting can help reduce unwarranted and ineffective fungicide applications and help reduce wasted costs. Remember to always tank mix SBI fungicides with protectant (M) fungicides (i.e. chlorothalonil) to help reduce the chances for fungicide resistance developing. Never apply SBI fungicides in consecutive applications, and always be aware of the fungicide rates that you are applying.

Section 18 for Sinbar in Watermelons - Mark VanGessel, Extension Weed Specialist; mjv@udel.edu

The State of Delaware has been granted a section 18 label for use of Sinbar 80 WP in watermelons as a preemergence treatment. It is the same type of label we have had the past few years. It is for 3 to 4 oz per acre of Sinbar, applied preemergence to bare ground or row middles. The label is available online at http://www.rec.udel.edu/Update06/sinbarwatermelonDE.pdf or contact Lisa Collins at lcollins@udel.edu or 856-2585 x544.

Mesotrione and Sweet Corn - Mark VanGessel, Extension Weed Specialist; mjv@udel.edu

Last week I mentioned Lumax and Lexar received labels for use in sweet corn and Callisto also had a sweet corn label. All of these products contain mesotrione, a relatively new herbicide that causes susceptible plants to turn white. We have tested mesotrione for about 4 years in sweet corn and have had excellent weed control. We have tested many different hybrids and have had differing levels of tolerance. Most of the time we have seen no sweet corn response. In some trials we have seen whitening of the sweet corn foliage, but the corn recovers and yield is not impacted for hybrids commonly used in our region. Sweet corn bleaching is more likely to occur if nitrogen or AMS is used in combination with crop oil concentrate when Callisto is applied postemergence. The Callisto label reads DO NOT ADD UAN OR AMS; and USE OF NONIONIC SURFACTANT INSTEAD OF CROP OIL CONCENTRATE IS RECOMMENDED. Some hybrids are more sensitive than others and we participated in a multi-state project evaluating hybrid tolerance using over 100 hybrids. The results of this trial are available at http://www.rec.udel.edu/weed_sci/WeedPublicat.htm#Weed%20Facts

Agronomic Crops

Agronomic Crop Insects - Joanne Whalen, Extension IPM Specialist; jwhalen@udel.edu

Alfalfa
In fields that have not been harvested, economic levels of alfalfa weevil are still present. If alfalfa is in the full-bud stage and economic levels are present, early harvest is an alternative to spraying. However, if harvest is not possible within 3 days and populations are increasing, use a short residual insecticide. If economic levels were present before cutting, be sure to check regrowth for larvae and feeding damage within a week of cutting. In recent years, cool conditions after first harvest have not produced enough “stubble heat” to control populations with early cutting. In some cases, damage to regrowth can be significant. A stubble treatment will be needed if you find 2 or more larvae per stem and the population levels remain steady.

Field Corn
In recent weeks, black cutworm pheromone and BLT traps on the eastern shore of Maryland have been unusually high. Although pheromone trap catches in Delaware have not been above normal, it will be important to watch carefully for black cutworm in corn, especially in newly emerged plantings. As a reminder, although the seed applied treatments have black cutworm on the label, these fields may still be susceptible to damage, especially under the higher population pressure. As indicated in past newsletters, the Cruiser label only states cutworm suppression. The Poncho label says it will provide early season protection of seedlings against injury. After our field experiences in 2004 and 2005,
entomologists in our region feel that seed applied treatments may not provide economic cutworm control under certain conditions, especially if economic levels of larger larvae are present at planting. Fields should still be scouted and a rescue treatment applied if necessary. In addition to black cutworm, early cutting can also be caused by the variegated cutworm which we can find while sampling for grubs. As a general guideline, a treatment should be considered in 1-2 leaf stage corn if you find 3 percent cut plants or 10% leaf feeding.

Wheat
The first grass sawfly and true armyworm larvae have been detected in small grains in Sussex County. Once grain heads have emerged, you should begin sampling small grains for sawfly and armyworm larvae. Remember, armyworm larvae are nocturnal so look for larvae at the base of the plants during the day. As a general guideline, a treatment should be considered if you find one armyworm per foot of row for barley and 2 per foot of row for wheat. Since sawflies feed on the plants during the day, small sawfly larvae can often be detected early using a sweep net. However, there is no threshold for sweep net samples. Once sawfly larvae are detected, sample for larvae in 5 foot of row innerspace in 5-10 locations in a field to make a treatment decision. You will need to shake the plants to dislodge sawfly larvae that feed on the plants during the day. As a guideline, a treatment should be applied when you find 2 larvae per 5 foot of row innerspace or 0.4 larvae per foot of row. If armyworms and sawflies are present in the same field, the threshold for each should be reduced by one-half.

You should also watch for movement of aphids from lower leaves into to the grain heads. Aphids can be found in many fields and beneficial population levels are variable. The lack of moisture in mid-winter and the cool, dry spring conditions have resulted in conditions that are favorable for higher populations. With the predicted cooler weather this weekend, natural enemies will lag behind. A treatment should be considered if you find 20-25 aphids per head and beneficial insect activity is low. Beneficials include lady beetle adults and larvae, syrphid fly larvae, lacewing larvae, damsel bugs, and parasitic wasps. A ratio of one predator to every 50 to 100 aphids may be sufficient to achieve biological control.

Agronomic Crop Diseases
Bob Mulrooney; Extension Plant Pathologist; bobmul@udel.edu

Small grain
Dry weather with low humidity is not favorable for disease development which is resulting in little to no disease in small grains. Scouting needs to continue especially since the rains of last weekend and some rain on Tuesday night in some areas.

As mentioned last week, we did get a report that stripe rust was present in some areas of Georgia, so if we should get enough rain to favor infection, we may see stripe rust again in 2006.

Controlling Perennials When They Emerge from Seeds - Mark VanGessel, Extension Weed Specialist; mjv@udel.edu

Last year I had a number of questions about controlling pokeweed in corn and soybeans. I have noticed at the research farm there are a number of pokeberry seedlings coming up in fields this spring and decided to reprint this article from a few years ago.

Perennials often produce seeds that are adapted to being moved by the wind (hemp dogbane, milkweed, or Canada thistle) or produce large seeds or berries that are eaten by birds and animals and spread around. We conducted a greenhouse study (funded by DE Soybean Board) to examine which commonly used soil-applied herbicides are effective in controlling these plants when they originate from seeds. Often perennials will emerge from seeds, but after 3 to 4 weeks they are producing perennial root systems and developing perennial characteristics. Being able to select the correct herbicide when you know seeds are coming into your fields can help prevent headaches and frustration in years to come.
Johnsongrass, bermudagrass, Canada thistle, hemp dogbane, common milkweed, common pokeweed, and horsenettle were planted in the greenhouse and sprayed with common soil-applied herbicides (Dual, Prowl, Command, Lorox, Sencor, Lexone, atrazine, Scepter, and Canopy). This study was conducted a few years ago and neither Lumax nor Lexar was available at that time for testing. Next to each weed are the herbicides that provided the best level of control (over 90% control).

Bermudagrass: Dual, Prowl, Command, and Sencor or Lexone
Johnsongrass: Command.
Canada thistle: Command, Sencor or Lexone, atrazine, and Canopy
Hemp dogbane: Command, Canopy, Sencor, and atrazine
Common milkweed: Sencor or Lexone, and Canopy
Common pokeweed: Canopy, and Sencor or Lexone
Horsenettle: Sencor or Lexone, atrazine, and Canopy

This was control of plants emerging from seeds. This was not control of plants emerging from rootstocks. If you are concerned about perennial weeds becoming established in your fields due to seeds deposited last year, there are options for controlling them when they germinate from seeds. As the list indicates, one herbicide will not control all the different perennial weeds. Be sure to match your herbicide with the species.

Options for Triazine-Resistant Lambsquarters and Pigweed Control in Corn - Mark VanGessel, Extension Weed Specialist; mjv@udel.edu

Triazine resistant weeds are a wide spread problem in Delaware. Atrazine at 1 to 1.5 lbs/A is an effective treatment if the weeds are not triazine-resistant, but will have no effect on triazine-resistant weeds. If lambsquarters and pigweed are not effectively controlled with the atrazine applied preemergence but other species are controlled, you should be concerned about triazine-resistant biotypes and control the lambsquarters postemergence. Atrazine is in many pre-mixtures with residual grass herbicides including: Bicep, Guardsman Max, Keystone, Harness Xtra, and Fultime. Furthermore, triazine-resistant weeds will not be controlled with Princep and probably not with Sencor either.

If you know you have problems with triazine-resistant pigweed or lambsquarters the most consistent options in our trials include Lumax, Lexar, or Hornet. Hornet can cause some stunting if corn is planted less than 1.5 inches deep or soil organic matter is less than 1.5%. Other herbicide options are available, but they have not performed as consistently in our trials. Prowl is one of those that has not been as consistent, but it is considerably less costly. Beware of planting depth and adequate soil covering the seed if using Prowl.

Control of triazine-resistant lambsquarters is often dependent upon postemergence applications. Postemergence control of lambsquarters and pigweed (triazine-resistant and susceptible) can be achieved with a number of options including Distinct, Banvel, Exceed, Callisto (can not use if Lumax was used at planting), Harmony GT, NorthStar, or Equip.

Cost Control in DRYLAND Corn and Beans While Maintaining Efficiency - Richard Taylor, Extension Agronomist; rtaylor@udel.edu

With below average rainfall the dominant condition across much of the state, many growers may be looking at ways to reduce, or at least manage, their costs on dryland acres. Let’s review some of the options available.

Seed cost is a major expense regardless of whether a field is dryland or irrigated. There’s often the temptation for dryland fields to select inexpensive hybrids in case rain doesn’t come. Actually, the breeding efforts of the seed companies have made great progress in the past decade in selecting hybrids that improve a grower’s chance of making a crop, even after periods of drought stress. This has been
especially apparent in hybrid corn where the current “workhorse” hybrids can yield even under periods of moderate drought stress. That’s not to say that a severe drought won’t reduce yields to the point that a field is no longer worth even combining. It does say that if, in consultation with your seed dealer, you select one of the better “workhorse” corn hybrids your chance of obtaining a corn crop will be very much improved. The older hybrids that a grower can buy for a lot fewer dollars per unit do not have the genetics to maintain yields even under moderate drought stress. For seed of a good stress tolerant hybrid, my advice is to spend the money for the better hybrid.

For corn, the biggest cost reduction possible is on the cost of fertilizer. I’m sure you’ve seen the yield response curves educators often present and this year on dryland acres is a good time to know what they mean. The largest response (more bushels per pound of nitrogen (N), phosphorus (P), or potassium (K) added) to added fertilizer comes with the first few units of that fertilizer. For example, corn on many soils will yield 40 to 60 bu/A without any additional N using up the N that’s mineralized from the soil organic matter and that left over from previous cropping cycles. The addition of 50 lb N/A can easily boost yields to 100 to even 140 bu/A (all these numbers are figuring ideal rainfall and growing conditions). The next 25 lb N/A may boost yields only by 10 or 20 more bu/A and the next 25 lbs may add only another 5 to 10 bu/A (dryland). So if a grower wanted to reduce input costs, a logical choice would be to drop his fertilizer rate, especially N rate, to a level where a reasonable yield goal could be achieved while possibly giving up the very high yield potential in that one year in ten or twenty when rainfall is just right to make great yields. By using starter P or banded K on fields that need P or K, you can use half the P or K called for in a broadcast recommendation. Where soil test P and K are in the medium or higher category and cost control is a concern, why not eliminate P and K from your fertilizer program this year. When a soil test shows sufficient levels of P and K in the soil, the chances of getting a yield response are not very great. In most cases, the chance of water deficit limiting yield is the greater concern for dryland situations.

For soybeans, the same comments hold true for P and K. If they are in the medium or sufficient soil test category, the chance of a nutrient deficiency reducing your yield is far less than the chance of water stress or other environmental factors reducing yield. For N, I know that in the past a lot of folks have tried boosting yields with small N applications, but keep in mind that other than on very sandy, acid sites (where beans failed to nodulate because of the low pH) additions have not been shown in controlled experiments to increase soybean yield. My advice is don’t waste your money.

There also are many products available claiming to boost yields either as seed treatments, foliar sprays, or in other delivery systems. With cost control of paramount concern in dryland production systems, stay away from these miracle products. A good rain at the right time will add more to your bottom line than any of these products ever could.

Seeding rates have been looked at to control costs as well. From the research I’ve seen and heard about, a target corn population of 22,000 to 24,000 plants per acre is still more profitable than suggested lower populations of 16,000 to 18,000 plants per acre. The yield response to the higher populations when rainfall is adequate to prevent complete crop failure more than compensates for the added seed cost. For soybeans, a more important key than absolute seeding rate is plant distribution. Narrower rows, so that plants become almost uniformly distributed, does more for yield than a big change in population. Try for populations close to 150,000 plants per acre on dryland and up to 200,000 to 225,000 plants per acre on irrigated beans. Again, distribution of seed within the row is the most important factor.

For soybeans if you can use one of the newer soybean inoculants, especially the liquid types that can be applied as bulk seed is augered into the drill or planter, inoculation has been shown to return many dollars per dollar spent.

Another aspect to mention is the need to know if soybean cyst nematodes (SCN) are a problem on your fields. Knowing the race involved is
important too since all Roundup Ready soybean varieties that I’m aware of have Race 3 resistance and not Race 1 resistance. Probably a third or more of our fields in Delaware have Race 1 SCN meaning that the SCN resistant Roundup Ready variety you purchase for those fields may not be any more effective at tolerating the SCN present than a non-resistant variety. If you go with a conventional herbicide program in Race 1 infested fields, you will have the option of choosing a soybean variety resistant to Race 1 and more likely to yield better than a Race 3 resistant variety.

In summary, use common sense in deciding on expensive or even inexpensive inputs on your dryland acres if cost control is important to you. It’s been said in the past that for a dollar worth of input you should reasonably expect 3 to 4 dollars in return to make it really worth spending that initial dollar. That reason is that in dryland agriculture, too often, the lack of adequate moisture determines yield potential not all the fancy inputs.

My thanks to Derby Walker, Jr. for his suggestions on this article!

Grain Marketing Highlights - Carl German, *Extension Crops Marketing Specialist; clgerman@udel.edu*

Weather vs. Noncommercial Traders
Note the date on the calendar, April 27th, 2006 and already we are hearing about commodity trader concerns as to whether the U.S. corn crop will be planted in a timely fashion or not. This message is likely to be the first weather factor of the growing season, assuming that subsoil moisture concerns in the Corn Belt have subsided, at least for the moment. The reason that commodity traders are now beginning to watch planting progress in earnest is that the window of opportunity for achieving optimal yields is rapidly closing. For the Corn Belt, that ‘window of opportunity’ is now viewed as between April 5th and May 5th for corn planting. Weather developments now become the primary factor impacting commodity prices. With that said, a point of clarification is in order. The corn, soybean, and wheat markets are also benefiting from noncommercial activity or fund buying, thereby effectively making these markets more volatile and presenting more prolonged periods of pricing opportunities. Summer weather and yield potential will eventually prevail in determining commodity price direction, according to conventional wisdom.

Soybean Highlights
The trend continues sideways indicating a neutral to bearish outlook held by noncommercial traders, while the underlying fundamentals remain bearish. Anyone with old crop soybeans should use price rallies to finish up old crop marketing.

Pre-report estimates for soybean exports ranged between 5.5 to 11 million bushels for the week ending 4/20/06, with 5 million bushels needed to stay on pace with USDA’s 900 million bushel estimate for the current marketing year, therefore the 4.1 million bushels reported is likely to be viewed as bearish.

Corn Highlights
The trend on the weekly continuous close chart remains up, reflecting the bullish noncommercial trader outlook. Fundamentally, the market remains bearish with a seasonal tendency to back off this time of year, until growing conditions and planting progress becomes more known.

Pre-report estimates for corn exports ranged between 27.6 to 39.4 million bushels and were reported at 30.8 million bushels are called neutral. In order to stay on pace with USDA’s 1.95 billion bushel export estimate for U.S. corn in the current marketing year, 20.4 million bushels were needed.

Wheat Highlights
The uptrend in the wheat market may be running out of steam due to the old net-long position held by noncommercial traders, the high historic price, and the bearish seasonal tendencies through harvest.

U.S. wheat exports were reported at 6 million bushels, with 12.6 million bushels needed to stay
on pace with USDA's 1.015 billion bushel projection for the current marketing year. This number will be viewed as bearish.

Marketing Strategies

New crop soft red winter wheat futures have dropped considerably since the decision was made to get to the 50% forward priced level some weeks back. With new crop wheat futures at the CBOT now trading at $3.61 per bushel, it is advisable to consider protecting the downside price risk on the remainder of the '06 wheat crop to be harvested with the purchase of $3.50 July or September puts, currently doable for 9 and 10 cents per bushel, respectively. By doing so, a minimum sales price of $3.10 per bushel ($3.50 Strike Price - 10 cent premium - 30 under basis = $3.10 MSP) can be locked in. Note: in the event the wheat is not produced the option can either be offset or allowed to expire without having to make delivery on the bushels contracted. Further, in the event that the underlying futures contract price was to exceed the $3.50 strike price at harvest then the seller is leaving upside price potential open, minus the premium cost. Something else to consider at this point in time is taking some initial sales for '07 SRW wheat production currently trading at $4.20 per bushel. The life of contract high for July '07 SRW wheat futures was recorded about two weeks ago at $4.32 per bushel. The thinking being that high wheat prices bring on increased wheat plantings throughout the world.

Anyone that still has old crop soybeans should also consider one of two courses of action: either go ahead and make the cash sale (currently being bid at $6.00 per bushel for July delivery into Seaford) or put a floor under them by either selling the July futures contract or by buying puts. For puts, the $5.60 July Strike price can be bought for 7 cents per bushel ($5.60 - 7 cent premium + 10 over basis = $5.63 MSP).

New crop corn and soybeans are currently sitting at the 30% forward contracted sales level. Dec corn is currently trading at $2.66 per bushel and November soybeans are trading at $6.10 per bushel. Basis is being offered at even for Dec corn and 15 under for Nov soybeans. Deciding whether to advance new crop corn and soybean sales at this point in time is not an easy call to make. The noncommercial trader business in these markets is giving us price levels that are better than the fundamentals for the current marketing year would support, in the event yields are normal. It is possible that the current price levels for both corn and soybeans could quickly decline in the event that weather or some other factor throws in a ringer. Seasonally, prices can and often do drift lower this time of year until more becomes known on growing conditions both here and abroad. Considering that basis bids can improve from current offerings, the calendar date, and the fact that commodity markets may not be acting according to historical standards, additional sales are not recommended at this point in time.

Announcements

Strawberry Twilight Meeting

Tuesday May 16, 2006 6:00 – 8:00 p.m.
Wye Research and Education Center

Featured speakers this year are:
Dr. Bill Turechek, USDA Fruit Pathologist
Dr. Jerry Brust, UM Entomologist
Mr. Michael Embrey, UM Apiary Specialist

There will be a tour of high tunnel production and field plots, followed by light refreshments.

For more information contact Michael Newell at (410) 827-7388.
Wye Spring Crops Twilight Tour
Tuesday May 16, 2006 6:30 p.m.
Wye Research and Education Center

This will be an opportunity to observe and discuss some of the research projects involving spring planted crops and small grains at the Wye Research and Education Center.

Some of the current research projects are:
Barley and wheat variety testing – Dr. Jose Costa
Disease resistance screening – Dr. Arv Grybauskas
Foliar fungicides on wheat – Dr. Arv Grybauskas
Hulless barley fertility – Dr. Bob Kratochvil
Wheat seeding rates – Dr. Bob Kratochvil

As always, we hope to be able to address any pest or management topics that are of current concern.

Refreshments provided by the Maryland Crop Improvement Association

For more information contact Mark Sultenfuss at (410) 827-7388 or msulten@umd.edu

Weather Summary

http://www.rec.udel.edu/TopLevel/Weather.htm

Week of April 20 to April 26, 2006

Readings Taken from Midnight to Midnight

Rainfall:
0.40 inch: April 21
0.86 inch: April 22
0.01 inch: April 23

Air Temperature:
Highs Ranged from 81°F on April 20 to 60°F on April 26.
Lows Ranged from 54°F on April 22 and April 23 to 45°F on April 26.

Soil Temperature:
63°F average.
(Soil temperature taken at a 2 inch depth, under sod)

The Weekly Crop Update is available online at http://www.rec.udel.edu/TopLevel/Publicat.htm

Weekly Crop Update is compiled and edited by Emmalea Ernest, Extension Associate - Vegetable Crops

Cooperative Extension Education in Agriculture and Home Economics, University of Delaware, Delaware State University and the United States Department of Agriculture cooperating. Distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Delaware Cooperative Extension, University of Delaware. It is the policy of the Delaware Cooperative Extension System that no person shall be subjected to discrimination on the grounds of race, color, sex, disability, age or national origin.