The Weekly Schedule Begins – April 6, 2001

Weekly Crop Update is a sample of the type of information you will receive each week with a subscription or access via the Internet. This newsletter is designed to provide subscribers with the latest information on disease and insect problems as they are developing, weed control information, crop progress reports, and other timely topics related to agronomic and vegetable crop production in Delaware. University of Delaware Extension Specialists and Agents provide information for the newsletter. The weekly issues will begin on April 6, 2001 and continue through the month of September. The Weekly Crop Update can be obtained by mail, fax or from the Internet at http://www.rec.udel.edu/TopLevel/Publicat.htm. If you would like to receive Update by mail or fax, the cost of subscription will remain at $30 (same as last year). Use the enclosed form to subscribe. If you can access the Internet, there is no charge for the newsletter. Weekly Crop Update is mailed each Friday. If you choose to receive the newsletter by fax, it will be sent to subscribers on Friday evening. The newsletter is placed on the Internet by 4:30 p.m. on Fridays. We also offer to send an e-mail reminder to those of you who wish to receive one each week. Please forward your e-mail address on the enclosed form or at my e-mail address below. I would like to ask those of you who plan to access the newsletter from the Internet to notify me of any problems you may encounter during the season. Please forward any comments or concerns to me at 302-856-7303 or at wootten@udel.edu.

Vegetables

Vegetable Insects - Joanne Whalen, Extension IPM Specialist; jwhalen@udel.edu

Seed Corn Maggot in Vegetables.
We are starting to find seed corn maggot flies laying eggs in recently plowed fields. Cool, wet conditions at planting, the use of manure or plowing under of green cover crops close to planting all favor maggot problems. Depending on spring weather conditions, most early planted vegetables including cole crops, peas, snap beans, melons, spinach and sweet corn are all susceptible to maggot attack. Seed treatments containing diazinon or chloropyrifos provide control of moderate populations. Diazinon 50W, still labeled as a planter box treatment for peas, corn and succulent beans, has provided good maggot control on these crops. It should be used at ½ oz per bushel of seed combined with ½ oz of graphite per bushel of seed to reduce friction between seeds. To reduce the chances of phytotoxicity, seed must also be treated with a fungicide and only treat seed that will be used immediately. A soil insecticide may also be needed if a number of conditions favoring maggots are present at planting. For many spring planted vegetables, with the exception of sweet corn, the use of a broadcast application of diazinon is the only available option. You can still use diazinon as it is currently labeled on all available material in the "pipe-line." However, diazinon is currently under FQPA review and you should be aware that the uses of this product will be changing after this use season.
After the initial review, cole crops, melons, lima beans, snap beans, peas and sweet corn uses have been retained on the diazinon label. Only the seed treatment uses on peas, lima beans and snap beans will be retained. These uses will return to the re-registration process were they will look at issues like applicator exposure. Diazinon must also undergo the cumulative risk assessment with other organophosphates. Although all Agricultural uses made it through the initial review, spinach, potato, cucumber, tomato, squash and pepper labels are currently under consideration for cancellation. Since there are no other available treatments for seed corn maggot in spinach, we have informed EPA about the need for diazinon as an at-planting application on spinach. We are currently waiting for their response and will keep you aware of any new developments.

Peaches.

EPA has granted our Section 18 for the use of Provado on stone fruit to control aphids that vector the Plum Pox Virus. This emergency exemption (Section 18) is effective from April 1 through Oct 15, 2001. Growers may use a maximum of 4 applications at a rate of 5-6 ounces of product per acre. No more than 24 ounces of product may be applied per acre per year. There is a zero day pre-harvest interval.

Weed Control in Greenhouses – Jay Windsor, County Agricultural Agent; windsor@udel.edu

There are no residual herbicides labeled for greenhouses at the present time. Surflan was labeled, but is no longer registered for use in enclosed greenhouses. Roundup and or manual removal prior to setting plants or seed in the greenhouse is recommended.

The use of weed mats has proven to be worth the cost of installation and will provide almost total weed control for many years. The fabric can be used alone or covered with gravel to provide additional drainage. Remember that transplants will root into the gravel or even into the weed mats. Providing some sort of benching, pallets, or framing to allow for air pruning of the roots will help with this problem.

You have a few choices of herbicides that can be used in the greenhouse to pick up escapes and spot spraying even with the crop growing in the house. Remember that when spraying any of these herbicides, you should always turn exhaust and horizontal air flow fans off while spraying. Leave them off for at least a half hour after spraying to prevent any movement of spray droplets to the crop.

There are three materials labeled for use in the greenhouse with a crop present;

1) **Reward** which is a contact material and may not control perennials effectively
2) **Scythe** is another contact herbicide
3) **Finale** is a systemic material similar to Roundup that should be more effective than the contact materials on some harder to control weed species.

Note: Roundup is not labeled for use in the greenhouse when the crop is present.

Controlling any weed growth around the outside of the greenhouse is recommended to remove cover for rodents, and host plants for insects and diseases. You can use residual materials such as Surflan or Princep in combination with Roundup near the base of the greenhouse. Remember again to turn off the fans if you have a crop in the house so the spray is not drawn into the greenhouse through the louvers. Do not use long residual materials such as Pramitol or volatile herbicides like 2,4-D or Banvel anywhere near a greenhouse.
Fungicide Update for Vegetables.
The following are some recently or newly registered fungicides for 2001. Specific use information will be found in the 2001 Commercial Vegetable Production Recommendations E.B. 137.

Quadris 2.01F from Syngenta in addition to tomatoes, potatoes, and cucurbits (cucumbers, muskmelons, pumpkins & winter squash, summer squash and watermelons) it is now labeled on spinach to control white rust and leaf spots, sweet corn for leaf blights, and carrots for leaf blights. These changes did not make the new Recs book. Nova 40WP from Rohm &Haas is now labeled for rust control in asparagus.

Previcur (propamocarb HCl) from Aventis has been labeled for late blight control in white potatoes combined with another protectant such as mancozeb or chlorothalonil.

Root Knot Nematodes.
Remember that spring sampling for root knot is not very predictive (not very accurate) of what the overwintering population might be. Population levels tend to be lower and thus more easily missed when random samples are taken. In winter, a higher proportion of the population is in the egg form which may not show up in the lab technique that is used to extract the nematodes from the soil. Zero counts and low counts are hard to interpret at this time of the year. High counts at this time of year indicate high levels in the field and are reliably used for decision making. Fall sampling is best for root knot.

Sweet Corn.
Winter Temperature Index for Predicting Stewart’s Wilt in Sweet Corn 1994-2001. Corn flea beetles are the overwintering host and vector of Erwinia stewartii, the bacterium that causes Stewart’s wilt. Winter survival of the flea beetles can be predicted using a winter temperature index which is calculated by adding the average temperature for Dec., Jan., and Feb. Flea beetles do not survive well when the average temperature is below 27°F for any month. If the temperature is above 33°F, flea beetles may be present in early plantings of sweet corn. The occurrence of Stewart’s wilt on early-planted sweet corn usually corresponds with the ability of flea beetles to overwinter. The following table shows that overwintering is very likely again in Delaware and the prediction would be for a severe Stewart’s wilt season.

Fortunately for Delaware growers, resistant varieties of sweet corn have been available for most processing sweet corn. A dependable level of resistance in fresh market sweet corn has been more elusive. Despite years of favorable flea beetle overwintering, we continue to have few losses from Stewart’s wilt. Why? Growers have planted resistant varieties and have effectively used the insecticides that have been available. Growers need to continue to plant the most resistant varieties available and scout sweet corn for flea beetles and treating with insecticides when thresholds are exceeded. The use of seed treatments to control flea beetles is another avenue that is being carefully examined and research is currently underway to see if it will be of value to Delaware growers.

Winter Temperature Index For Predicting Stewart’s Wilt in Delaware Sweet Corn, 1993-2001

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>31.2</td>
<td>40.3</td>
<td>41.3</td>
<td>39.3</td>
<td>42.0</td>
<td>33.5</td>
</tr>
<tr>
<td>January</td>
<td>33.8</td>
<td>33.9</td>
<td>39.5</td>
<td>42.6</td>
<td>35.0</td>
<td>33.5</td>
</tr>
<tr>
<td>February</td>
<td>38.8</td>
<td>39.7</td>
<td>38.7</td>
<td>40.6</td>
<td>41.5</td>
<td>34.7</td>
</tr>
<tr>
<td>INDEX</td>
<td>103.8</td>
<td>113.9</td>
<td>119.5</td>
<td>122.5</td>
<td>118.5</td>
<td>101.7</td>
</tr>
</tbody>
</table>
Average monthly temperatures in °F at Newark, DE Experiment Sta. 1994-2001.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>December</td>
<td>31.1</td>
<td>39.1</td>
<td>41.0</td>
<td>38.4</td>
<td>40.9</td>
<td>32.1</td>
<td>41.8</td>
</tr>
<tr>
<td>January</td>
<td>31.5</td>
<td>32.6</td>
<td>34.8</td>
<td>40.9</td>
<td>33.2</td>
<td>30.9</td>
<td>37.6</td>
</tr>
<tr>
<td>February</td>
<td>38.4</td>
<td>37.8</td>
<td>38.0</td>
<td>40.6</td>
<td>40.3</td>
<td>34.7</td>
<td>31.7</td>
</tr>
<tr>
<td>INDEX</td>
<td>101.0</td>
<td>109.5</td>
<td>113.8</td>
<td>119.9</td>
<td>114.2</td>
<td>97.7</td>
<td>111.1</td>
</tr>
</tbody>
</table>

Severity Index: < 90, usually absent; 90-100, intermediate; >100, usually severe.

Prediction for 2001
Newark: Severe; Georgetown: Severe

Note: These are lowest values since the 1995-96 growing season.

Section 18 Requests for Vegetable Herbicides for 2001 – Ed Kee, Extension Vegetable Crops Specialist; kee@udel.edu

Applications for Section 18 Emergency Exemptions have been made for the herbicides listed below with the EPA, in cooperation with our Delaware Department of Agriculture. We will notify you of their status as soon as we receive the decision on each of these materials:

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Crop</th>
<th>Submitted</th>
<th>Approved</th>
<th>Dates Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual Magnum</td>
<td>Spinach</td>
<td>✓</td>
<td>✓</td>
<td>9/00 – 5/1/01</td>
</tr>
<tr>
<td>Sprout-Nip</td>
<td>Spinach</td>
<td>✓</td>
<td>✓</td>
<td>3/1/01-12/31/01</td>
</tr>
<tr>
<td>Command</td>
<td>Watermelon</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Sinbar</td>
<td>Watermelon</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflex</td>
<td>Snap Beans</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please check with your Extension Office, Ag-Chemical Dealer, and/or the label for details on all these materials before using.

Licensed and Bonded Dealers in Agricultural Products

The Delaware Department of Agriculture grants licenses to Dealers of Agricultural Products. The Dealers include Delaware brokers, as well as, out-of-state brokers licensed as dealers of agricultural products in the State of Delaware. The Department of Agriculture makes no warranty concerning the use of this list.

For more information, contact Cliff Hudson, DDA, 302-739-4811.
<table>
<thead>
<tr>
<th>LICENSE NO.</th>
<th>COMPANY/ADDRESS</th>
<th>LETTER OF CREDIT</th>
<th>BOND EXPIRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>128-01</td>
<td>L & L Melon Sales Inc.</td>
<td></td>
<td>7/9/01</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 288, 90 U. S. Route 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laurel, Delaware 19956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129-01</td>
<td>Wm. P. Hearne Produce Co., Inc.</td>
<td></td>
<td>12/31/01</td>
</tr>
<tr>
<td></td>
<td>P.O.Box 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salisbury, Maryland 21802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130-01</td>
<td>Seabrook Brothers & Sons, Inc.</td>
<td></td>
<td>12/31/01</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 5103</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seabrook, New Jersey 08302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131-01</td>
<td>Agway, Inc.</td>
<td></td>
<td>12/31/01</td>
</tr>
<tr>
<td></td>
<td>T/A Country Products Group, 333 Butter Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DeWitt, New York 13030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132-01</td>
<td>McMelon, Inc.</td>
<td></td>
<td>1/01/01</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1077</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lake Wales, Florida 33859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133-01</td>
<td>Sunnyboy Produce Co., Inc.</td>
<td></td>
<td>12/07/01</td>
</tr>
<tr>
<td></td>
<td>3301 S. Galloway St., Rm 248</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134-01</td>
<td>Tri Winner Irving Acres, Inc.</td>
<td></td>
<td>12/31/01</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1289, Houlton Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presque Isle, Maine 04769</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135-01</td>
<td>C & J Transport, Inc.</td>
<td></td>
<td>12/31/01</td>
</tr>
<tr>
<td></td>
<td>J. R. Sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. O. Box 267</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fairfield, Maine 04937

136-01 **Potandon Produce L.L.C.** 12/31/01
3242 South Woodruff Avenue
Idaho Falls, Idaho 83404

137-01 **Pacific Heartland, LTD** 12/31/01
4335 State Road 60 West
Mulberry, Florida 33860

138-01 **Hapco Farms, Inc.** 12/31/01
889 Harrison Avenue
P. O. Box 608
Riverhead, New York 11901

139-01 **Maine Potato Growers, Inc.** 12/31/01
P. O. Box 271
Presque Isle, Maine 04769

140-01 **Thomas E. Moore, Inc.** 4/14/01
P. O. Box 794
Dover, Delaware 19903

141-01 **John F. Cope Co., Inc.** 12/31/01
John Cope’s Food Products, Inc.
156 W. Harrisburg Ave.,
P. O. Box 419
Rheems, Pennsylvania 17570

142-01 **Maine Farmers Exchange** 12/31/01
P. O. Box 869
Presque Isle, Maine 04769

143-01 **M. G. Ford Produce, Inc.,** 2/15/02
Occasional Updates will be provided.

Field Crops

Field Crop Insects - Joanne Whalen, Extension IPM Specialist; jwhalen@udel.edu

Field Corn
Seed Corn Maggot.
Although winter temperatures have been colder or at least more normal compared to the last few seasons, we are starting to find seed corn maggot flies laying eggs. Cool, wet conditions at planting, the use of manure or plowing under of green cover crops close to planting all favor maggot problems. Depending on spring weather conditions, most early planted conventional corn and all no-till plantings will be susceptible to seed corn maggot attack. If treatments are applied properly, seed treatments have provided effective control. This season, in addition to diazinon and permethrin based seed treatments, will now have the option of using Gaucho or Prescribe treated corn. Our research results from last season indicate that these products, both containing imidacloprid, will provide effective seed corn maggot control.

White Grubs.
Although we feel that agronomic and weather factors played the primary role in predisposing corn to lodging last season, grub damage was also a consideration in numerous fields. The primary soil insect pest found in the root zone of lodged corn plants was the true (multi-year) white grub. However, we also found annual species present under corn roots. If grubs were found in fields last fall, understanding the biology and life history of the two main types of grubs is important when developing a management strategy.
Annual White Grub – Japanese Beetle, False Japanese Beetle and Asiatic Garden Beetle: In general, these are the most common types of grub encountered in corn fields at planting time. Larvae are sensitive to soil moisture and texture so we often find the highest populations on sandy knolls. Since adult beetles are attracted to flowering grasses, we can also see grubs in low areas where weeds were present the previous season. Soil moisture and texture are generally not uniform throughout any given field; therefore, white grub infestations are not uniform. Within the same field, some areas may be completely destroyed while others are undamaged. Larvae generally pupate in late-May to early-June. Therefore, late-planted corn often escapes annual grub damage.

True White Grub – May and June Beetles: In comparison, true (“multi-year”) white grubs complete a single generation in three years. Larvae are also sensitive to soil moisture and texture so infestations appear in spots in fields. Eggs are laid by the May or June beetle adult in July. The eggs are laid one or more inches below the soil surface, usually in sod or patches of grassy weeds in cropland areas. First instar larvae emerge 2-3 weeks after egg deposition. These young grubs feed on organic matter, roots, and other underground parts of the plant throughout the growing season. During the first year, the damage to infested crops is usually minimal. However, if populations are heavy (> 5 per plant), you may see root damage and eventual plant lodging. This type of feeding may also make plants more susceptible to stalk rot and root rotting organisms. Larvae molt once during their first summer. Grubs then move to a depth below the soil frost line. Second instar larvae migrate upward and begin feeding on plant roots in the spring of the second year. Larvae feed heavily on roots the entire second summer; thus, damage is usually greatest in the second year of the life cycle. They become nearly full-grown during this summer.

Sampling and Decision Making for Grubs. At planting, soil sampling can be used to determine the density of both types of grubs as well as which species is present. If populations are above 0.5 – one grub per square foot in sandy soils or 1-2 per square foot on heavier soils, the use of in-furrow applications of soil insecticides provides the best control of either type of grub. In our area, Counter and Force have provided the most consistent control of grubs. However, in-furrow applications of Fortress and Regent as well as Prescribe-treated corn seed are also labeled for grub control. Remember, at planting insecticides are only designed to provide control of grubs present at planting time. You should not expect control of larvae present in August and September that resulted from eggs laid in early July.

Because of the differences in the life cycles and damage potentials, it is important to know which species is present. The pattern of hairs or spines on the underside of the last abdominal segments is the best way to distinguish between true-multi-year species and annual species grubs.

a. Japanese Beetle
b. Annual Grub
c. True Grub

Wheat.
Aphids – Although we still find a spotty distribution of Barley Yellow Dwarf Virus (BYDV) in the state, aphid management can play a part in reducing losses from BYDV. Weather conditions were mild in October and early November, but temperatures were colder in late November and December compared to recent years. Counts in our aphid management studies were high in October, but went to almost zero through the winter months. Evaluations in early March showed no aphid activity. It still appears that the two most important times to control aphids to help reduce problems from BYDV are
the first 30 and 60 days after plant emergence. The cold winter weather has reduced winter aphid movement, reproduction, and spread. Additionally, it appears that a large proportion of the aphid population was killed. As a rule of thumb, temperatures below 30 degrees F result in significant aphid mortality. As weather warms up again, fields should be scouted for aphids and beneficial insect activity. In late winter to early spring, the treatment threshold of 150 – 200 aphids per foot of row should be used. However, if you have a history of BYDV in your area and localized populations are causing stand reductions, treatment may be needed at 10-15 aphids per foot of row. Information from Kentucky indicates that there is generally no yield impact after Feeke’s growth stage 4 (stem elongation). Whether you decide to spray or not, remember the BYDV you see this spring is generally a result of what happened in the fall. Warrior, dimethoate, Lannate and PennCap will provide aphid control. Dimethoate will provide poor control if temperatures are below 60 degrees F.

Small Grain Weed Control - Mark Van Gessel, Extension Weed Specialist; mjv@udel.edu

It is time to consider your weed control for the small grain crop. Fields that were no-tilled or chickweed emerged shortly after planting in the fall are fields to check first for spring treatment. If you have wild garlic or Canada thistle, the time of application should be delayed since you need to spray these weeds when they have fully emerged. Coverage is important for these species. If weed pressure from winter annuals is great, it may not be possible to get control of the winter annuals and perennial with one application. In that case, two applications maybe required. You can mix your Harmony Extra with nitrogen. If spraying Harmony Extra with nitrogen be sure to pre-mix it in water first. If using nitrogen as your carrier, no need for a surfactant unless wild garlic is over 8 inches tall. Applying Harmony Extra in nitrogen diluted with water, use a non-ionic surfactant at ½ to 1 pint/100 gallons of solution. If applying it in water, use non-ionic surfactant at 1 qt/100 gallons.

Have you considered resistance management with your small grains? Most of the small grains get treated only with Harmony Extra, which contains two ALS-inhibiting herbicides (some type of herbicides as Pursuit, Accent, Classic etc). And many weeds have developed resistance to herbicides that have this mode of action. Consider how often a field is planted to small grains and how often it gets treated with Harmony Extra. If this rotation is short, 3 years or less, consider tankmixing another herbicide with Harmony Extra to minimize the risk of developing herbicide resistant weeds.

Finally, the following are the timing limitations for small grain herbicides. The timing restrictions are based on crop safety.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>up to jointing stage (pre-jointing)</td>
</tr>
<tr>
<td>Banvel/Clarity</td>
<td>up to jointing stage (pre-jointing)</td>
</tr>
<tr>
<td>Buctril</td>
<td>up to boot stage</td>
</tr>
<tr>
<td>Harmony Extra</td>
<td>up to flag stage (pre-flag leaf)</td>
</tr>
</tbody>
</table>

Field Crop Diseases - Bob Mulrooney, Extension Plant Pathologist; bobmul@udel.edu

Soybean Cyst Nematodes.

It is not too late to soil test for the soybean cyst nematode (SCN). If soybean stubble is present, sample with a soil probe 6-8 inches deep between the plants in the row. Sample size should be 20-25 cores taken in a zig-zag pattern across the field. Ideally samples should represent no more than 10-20 acres. Sample bags and information sheets are available from the county extension offices. The cost is $10 per sample. New fields and those to be planted with susceptible varieties are the most critical to sample at this time. Remember that last seasons good growing conditions also favored SCN reproduction as well, and SCN population levels will be high where susceptible or moderately susceptible varieties were grown.
Keep in mind, that Roundup Ready varieties do not have specific resistance to race 1 of the soybean cyst nematode (SCN) but carry some resistance. This makes monitoring SCN populations more important if you are growing continuous soybeans and using Roundup Ready varieties, especially after last year. Periodic sampling can indicate if SCN populations are increasing. Variety trial results are available from the county Extension offices and the following website:

http://ag.udel.edu/extension/variety%20trials/index.html

Choose the best variety for your situation. Without aggressive management such as planting SCN-resistant varieties and rotating with non-host crops, such as corn, sorghum, vegetables (except snapbeans) yields can be reduced by 33%, or more when pre-plant cyst numbers are high and the weather is hot and dry.

Spring Small Grain Fertilization - Richard W. Taylor, Extension Agronomist; rtaylor@udel.edu

Some small grain fields have already been fertilized, but a number of fields have yet to receive their first spring nitrogen (N) application. Frequent rain events last summer not only meant excellent yields in most cases (this removed large quantities of N), but also removed by leaching or denitrification most residual soil N. In addition, a dry and cold fall, resulted in poor growth and development of many small grain fields. Other than fertilizer applied at or shortly after planting, little N is available to the small grain crop this spring since the prolonged cold weather has meant that soil temperatures are still too low to allow adequate N mineralization from the organic matter reserves.

There are other concerns about fertilizing small grains this season. Nitrogen prices are much higher than last year. The weather conditions have resulted in small, poorly tillered plants with smaller than normal root systems. In research on wheat fertilization in the past, we have found that yields increase only marginally after about 60 to 80 lbs N/A and that split applications can increase yields enough to justify the expense of multiple applications. With the high price of N and low wheat price, I would suggest limiting your N rate to no more than 80 lb N/A and applying it in a split application with about 60 percent as soon as you can get over the field and the remainder at Feeke’s growth stage 5 (leaf sheaths erect, fully tillered, and the first node just visible above the soil surface).

A second option to determining N rate at this stage is to use the data from Virginia Tech that relates N rate to tiller density. At tiller densities of about 60 tillers (a tiller is counted if it has 3 leaves visible) per square foot or less, their research suggests applying 60 lb N/A. At about 75 tillers per square foot, the suggested rate is 40 lb N/A. At 90 tillers per square foot, apply 20 lb N/A and there are 100 per square foot or more do not apply any N at ‘green-up’. A second application is applied at Feeke’s 5 or Zadok’s 30 and is based on tissue N content at that time.

Fertilizing Pasture and Hay Fields for Spring Production - Richard W. Taylor, Extension Agronomist; rtaylor@udel.edu

When you think of fertilizing pastures and hay fields, you’re most likely thinking of nitrogen (N) based fertilizer. For pastures and hay fields that are predominately grass (less than 25 percent legume), N recommendations call for multiple split applications of about 50 lb N/A now and additional applications after each grazing cycle or hay cutting. For hay fields, you should temper early spring application based on how successful hay drying/making has been in the past on each field. If the field often produces too much grass to properly dry and bale it, cut back on the amount of N fertilizer early to reduce the size of the first harvest. Plan on more later to boost second cut yields when the chance of good hay-making weather is improved.
For pastures and hay fields with more than 25 percent legume, cut your N fertilization rate unless you are trying to reduce the legume component. You can do this by adding extra N to increase the competitiveness of the grass against the legume. Grasses are far more efficient at using fertilizer N than are legumes.

For alfalfa fields, research at Delaware State University by Dr. Ed Jones and Harris Swain indicates that we should change the ratio of potash (K) to phosphorus (P) from 4 to 1 to a value closer to 3 to 1. Actual P and K fertilizer rates for alfalfa are under review based on the data from Delaware State University. I will keep you informed of any changes approved by the review committee.

Finally, review soil test data to determine the potential need for lime, P, K on pastures and hay fields. If lime is needed, it can be applied now or immediately following removal of a hay crop or at the end of a grazing cycle. Split apply P and K needs with about one-half of the total required after the first harvest and the second half in late summer to prepare the forage crop for winter dormancy. Boron should be applied with P and K on all forage fields containing 25 percent or more legume.

Grain Marketing Highlights - Carl German, Extension Crops Marketing Specialist; clgerman@udel.edu

March Crop Report Highlights

USDA decreased the carryover estimates for the 2000/01 marketing year for U.S. soybeans and wheat. The reduction reflected a 15 million bushel decrease for the soybean carryover (now placed at 330 million bushels) and only a 5 million bushel decrease for wheat (currently projected at 834 million bushels).

The carryout estimate for U.S. corn was increased by a whopping 50 million bushels, and is now placed at 1.941 billion bushels. The supply and demand balance sheet for U.S. corn has simply gotten worse since the fall. First, the 2000 crop production estimate turned out to be larger than originally projected and USDA’s outlook projections for corn exports have not held up. Grain analysts are now realizing that it isn't likely the U.S. will meet the initial export projects for corn in the current marketing year. This is likely to spell trouble for U.S. corn prices in the event a 'weather' market does not materialize.

Brazilian and Argentine Soybean Production Reported at Highest Level in History

Although beginning to sound like a broken record, this statement which was true in February was also found to be true in the March report, with one exception being the projected size of the Argentine crop. While the Brazilian production estimate remained the same as the February reported number of 35.5 million metric tons, the Argentine estimate was increased another 1 million metric tons and is now projected at 25 million metric tons.

Setting Realistic Pricing Objectives for 2001 Corn, Soybeans, and Wheat

Realistic pricing objectives for corn, soybeans, and wheat are given as follows: $2.50 Dec corn, $5.00 Nov beans, and $3.00 July wheat. These pricing levels are presented as good places to either forward price and/or to take price protection. Currently, none of these price objectives can be met. Therefore, we are in a holding pattern concerning new crop sales.

Grain Marketing Summary

Delaware loan rates remain unchanged at $2.10 per bushel for corn, $5.36 for soybeans, and $2.67 for wheat. Price moves on the CBT to the price objectives given above should be used to get to the 50% sold level for intended dry land corn, and wheat production. In the likely event that soybean prices do not rise above the loan rate, it may become necessary to take risk protection at the $5.00 level, without making any cash sale. Do not make and forward cash sales for corn, soybeans, and/or wheat sales for 2001 below the loan rate.
2001 Commercial Vegetable Recommendations Guide Available at Local Extension Offices

You may obtain copies of the Commercial Vegetable Recommendation Guide from your local county Extension office or by mail from the Research & Education Center in Georgetown. The cost for the Commercial Vegetable Recommendations Guide is $7.00. Please use the enclosed form and make checks payable to “University of Delaware” and allow one week for the delivery of the books.

Noxious Weed Fact Sheets Updated

The following factsheets have been updated and distributed to all three county offices and are available in pdf format at the following web address for easy downloading:

http://www.rec.udel.edu/TopLevel/Publicat.htm

<table>
<thead>
<tr>
<th>Factsheet</th>
<th>WeedFacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burcucumber Control in Cropland</td>
<td>WF-4</td>
</tr>
<tr>
<td>Johnsongrass Control in Cropland</td>
<td>WF-5</td>
</tr>
<tr>
<td>Giant Ragweed Control in Cropland</td>
<td>WF-2</td>
</tr>
<tr>
<td>Canada Thistle Control in Cropland</td>
<td>WF-3</td>
</tr>
</tbody>
</table>

Scroll down to “Weed Control”. These factsheets include the newest products, tables for easier product selection with product ratings, and sections for corn, soybeans, small grains, grain sorghum, alfalfa, pasture and forage, vegetables, and non-crop uses where applicable.

Reminder to Update Computer Virus Software and to Make Backups of your Computer Records on a Regular Basis

Just a quick reminder to update your computer virus software on a regular basis. Remember, never open emails with file extensions of “.exe, .scr, and .com” unless you have the most up-to-date virus protection. Be cautious of files with file extensions of “.doc and .xls” because they can also carry viruses. If you have any questions regarding virus protection, contact Dean Dey at 302-856-7303 or dey@udel.edu.

2001 Processing Sweet Corn - Weed Management Guide for Delaware and New Jersey

Available at each county extension office or online at:

Variety Trials Results Online for:
- Small Grain Results,
- Grain Sorghum,
- Soybeans
- Corn

At the following address:

http://ag.udel.edu/extension/variety%20trials/index.html or contact your county cooperative extension office for a copy.
Pesticide Container Recycling
Sussex Conservation District Maintenance Yard
Shortly Road, Georgetown DE
Collections from 9:30 am - 1:30 pm

May 17
June 21
July 19
August 16
September 20
October 18

All containers must be properly rinsed plastic crop protection product containers.
For more info, contact Grier Stayton or Bill Milliken, DDA, 302-739-4811; www.usagrecycling.com

UPCOMING MEETINGS:

Pesticide Applicator Training Session & Exam
March 28 - 29, 2001
Kent County Extension Office Pardee Center
(302-697-4000) on Rt 113 (next to DOT) in Dover
(south of the Blue Hen Mall).

June 26 - 27, 2001
Delaware Department of Agriculture (302-739-4811) on Rt 13 south of Dover.

Day 1: training 8:30 a.m.-4:00 p.m.
Day 2: training 8:30 a.m.-Noon
Day 2: Exam starts at 1:00 p.m.
Bring your calculator for the calibration questions.

Weather Summary

Week of March 16 to March 22

Rainfall:
0.02 inches: March 16
0.05 inches: March 17
0.03 inches: March 20
1.85 inches: March 21

Readings taken for the previous 24 hours at 8 a.m.

Air Temperature:
Highs Ranged from 53 °F on March 19 to 48 °F on March 17.
Lows Ranged from 45 °F on March 21 to 26 °F on March 20.

Soil Temperature:
45.3°F average for the week.
(Soil temperature taken at a 2 inch depth)

Delaware Cooperative Extension Offices
New Castle County 302-831-2506
Kent County 302-697-4000
Sussex County 302-856-7303

Compiled & Edited By:
Tracy Wootten
Extension Associate - Vegetable Crops

Thank You For 2000 WCU Survey Input
Thank you to all who participated in the 2000 Weekly Crop Update Survey at the end of the season. Your input was very useful to those who contribute to the newsletter and will help us to convey the impact of the newsletters to others. The information you provide has been very useful.

Web Address for the U of D Research & Education Center: http://www.rec.udel.edu

Cooperative Extension Education in Agriculture and home Economics, University of Delaware, Delaware State College and the United States Department of Agriculture cooperating, John C. Nye, Dean and Director. Distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Is the policy of the Delaware Cooperative Extension System that no person shall be subjected to discrimination on the grounds of race, sex, disability, age or national origin.
I would like to subscribe to the **WEEKLY CROP UPDATE NEWSLETTER** for 2001

Please send $30 and this form to:

Tracy Wootten
University of Delaware Research & Education Center
R.D. 6, Box 48
Georgetown, Delaware 19947

Please make checks payable to "University of Delaware"

I would like to receive **Weekly Crop Update** via

- [] FIRST CLASS MAIL
- [] FAX
- [] EMAIL

<table>
<thead>
<tr>
<th>Check#</th>
<th>Name:</th>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Telephone:</th>
<th>Fax:</th>
<th>E-Mail:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please send me ___ copy (ies) of the **2001 Commercial Vegetable Recommendations Guide**. They are $7.00/ book.

<table>
<thead>
<tr>
<th>Check#</th>
<th>Name:</th>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please make checks payable to "University of Delaware".

Please send check and this form to:

Tracy Wootten
University of Delaware Research & Education Center
R.D. 6, Box 48
Georgetown, Delaware 19947