Vegetables

Vegetable Crop Insects - Joanne Whalen, Extension IPM Specialist; jwhalen@udel.edu

Cucumbers.
All fields should be scouted for cucumber beetles and aphids. Fresh market cucumbers are susceptible to bacterial wilt, so treatments should be applied before beetles feed extensively on cotyledons and first true leaves. Pickling cucumbers have more tolerance to wilt, but a treatment may be needed if you find 2 or more beetles per plant and significant damage can be found on the cotyledons. A treatment should be applied for aphids if 10 to 20 percent of the plants are infested with aphids with 5 or more aphids per leaf. Fulfill, Thionex or Lannate will provide aphid control. Be sure to watch for bees foraging in the area and avoid insecticide applications on blooming crops. A pyrethroid, Lannate, Sevin or Thionex are labeled for cucumber beetle control in cucumbers.

Melons.
Continue to scout all melons for aphids, cucumber beetles, and spider mites. We continue to see an increase in the number of fields with spider mite infestations. If populations are high at the time of treatment, 2 sprays spaced 5 days apart may be needed. The threshold for mites is 20-30% infested crowns with 1-2 mites per leaf. Acramite, Capture, Danitol, Agri-Mek or Kelthane will provide control, but should be rotated to avoid the development of resistance. The treatment threshold for aphids is 20% infested plants with at least 5 aphids per leaf. Continue to watch fields carefully for cucumber beetles. Be sure to look under the plastic where beetles can often hide until disturbed. Be sure to watch for bees foraging in the area and avoid insecticide applications on blooming crops.

Peppers.
Fields should be sampled for thrips and corn borers. Although corn is growing rapidly and should be more attractive to corn borer moths, you should still watch for corn borer egg masses in isolated fields (i.e. not near corn fields). You should also check local moth catches in your area (http://www.udel.edu/IPM/traps/latestblt.html). A treatment with a pyrethroid may be needed if corn borer moth catches exceed 10 moths per night, especially if corn planting is delayed in your area or you are using rye strips as windbreaks. In general, 2 applications will be needed to achieve effective control. Thrips can cause damage in peppers by vectoring tomato spotted wilt virus and by causing direct plant damage. There have been reports of tomato spotted wilt in tomatoes in Virginia so watch fields carefully. Although there are no available thresholds, a treatment may be needed if you see populations increasing. Baythroid, Capture, Spintor and Warrior will provide thrips control. In addition to thrips and corn borers, you should watch for aphids feeding on peppers. A treatment may be needed prior to fruit set, if
you find 1-2 aphids per leaf for at least 2 consecutive weeks and beneficial activity is low.

Potatoes.
Colorado potato beetle (CPB) adults and larvae can be found in many fields, even where at planting treatments were used. The treatment threshold for adults is 25 beetles per 50 plants and defoliation has reached the 10% level. Once larvae are detected, the threshold is 4 small larvae per plant or 1.5 large larvae per plant. The threshold for each should be reduced if all stages of larvae are present. Avaunt + PBO, Actara, cryolite, Spintor or Provado will provide control. Corn borer sprays will now be needed 3-5 days after an increase in trap catches. Be sure to check our website http://www.udel.edu/IPM/traps/latestblt.html for the most recent moth catches in your area. Avaunt, Ambush, Baythroid, Furadan, Penncap, Pounce or Spintor will provide control. If you are scouting for infested terminals, the first treatment should be applied when 20-25% of the terminals are infested. Furadan or Monitor will provide the best control if you are waiting until you see infested terminals. Economic levels of potato leafhopper adults and nymphs can be found in many fields. As a general guideline, controls should be applied if you find ½ to one adult per sweep and/or one nymph per every 10 leaves. Dimethoate, a pyrethroid, Actara or Provado will provide control.

Snap Beans.
All fields should be scouted for leafhopper and thrips activity, especially seedling stage beans. The thrips threshold is 5-6 per leaflet and the leafhopper threshold is 5 per sweep. If both insects are present, the threshold for each should be reduced by 1/3. Dimethoate, Lannate, Asana, Capture, or Warrior will provide control of both insect pests. As soon as the earliest fields have buds present, a treatment will be needed for corn borer control once moth catches are above 2 per night in your area. Be sure to check our website http://www.udel.edu/IPM/traps/latestblt.html for the most recent moth catches in your area.

Sweet Corn.
Flea beetles and cutworms are still active in seedling stage sweet corn. The treatment threshold for flea beetles is 5% infested plants. The cutworm threshold is 3% cut plants or 10% leaf feeding. We are also seeing cereal leaf beetle adults in seedling and whorl stage corn. A treatment may be needed if you find 10 beetles per plant and 50% of the plants exhibit damage. Continue to sample any corn in the whorl stage to pretassel stage for European corn borer larvae. A treatment should be applied if 15% of the plants are infested. In recent years, Avaunt (whorl stage only), Baythroid, Mustang, Penncap, Spintor or Warrior has provided effective control. If economic levels of corn borers are present in pretassel to tassel stage corn, two sprays spaced 3-4 days apart are often needed. The first silk sprays will be needed for corn earworm as soon as ear shanks are visible. Treatment will be needed on a 5-day schedule.

Bee Kills in Watermelons - Derby Walker, Sussex County Agricultural Agent, University of Delaware; derby@udel.edu

Bee kills in watermelons is a serious problem. Everyone loses when it happens. The bee keeper loses his bees and the grower loses the pollination service. Unfortunately, materials act differently. Some kill the worker bees in the field during spraying. Others can be carried by the field workers from the field to the hive. Larvae are then killed. If the brood larvae are affected, you are looking at a 21 day set back before the queen will lay new eggs and new workers are available to care for the hive. It is economically important for growers to protect the bees that are in your field.

We recently looked at a field where most of field force was killed off. We think the hives will recover, but it will take time to replace the field.
force and build up the colony strength. As a grower, you can help reduce the problem of bee kills by informing the bee keeper of when you are going to apply bee killing materials. Spray late in day when there are fewer bees in the field. Alert the applicator to hive location to avoid direct spraying of hives. Select the safest material that works. You can provide additional protection for the bee hives by sitting your overhead irrigation system over the hive and run the system while the field is being sprayed. Another trick is to soak burlap with water and cover the hives to keep them in and cool. This would probably be the only way to protect hives sitting in the field. You have to remove the burlap right after spraying to prevent them from getting too hot and being killed by the heat. In the past, we used to just use local bee keepers. They could come protect their hives. Commercial bee keepers cannot make it around to all of the sites to protect their bees. A lack of bees will cost growers quality and yield. Can you afford not to help protect them?

Vegetable Crop Diseases - Bob Mulrooney, Extension Plant Pathologist, University of Delaware, bobmul@udel.edu

Late Blight Advisory

Disease Severity Value (DSV) Accumulation as of June 2, 2004, is as follows:
 Location: Joe Jackewicz Farm, Magnolia, DE. Greenrow: April 25, 2004

<table>
<thead>
<tr>
<th>Date</th>
<th>Daily DSV</th>
<th>Total DSV</th>
<th>Spray Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/25- 5/2</td>
<td>4</td>
<td>4</td>
<td>none</td>
</tr>
<tr>
<td>5/3</td>
<td>8</td>
<td>12</td>
<td>none</td>
</tr>
<tr>
<td>5/9</td>
<td>2</td>
<td>14</td>
<td>none</td>
</tr>
<tr>
<td>5/13</td>
<td>1</td>
<td>15</td>
<td>none</td>
</tr>
<tr>
<td>5/17</td>
<td>2</td>
<td>17</td>
<td>none</td>
</tr>
<tr>
<td>5/18</td>
<td>1</td>
<td>18</td>
<td>none</td>
</tr>
<tr>
<td>5/19</td>
<td>4</td>
<td>22</td>
<td>7-day</td>
</tr>
<tr>
<td>5/20</td>
<td>2</td>
<td>24</td>
<td>7-day</td>
</tr>
<tr>
<td>5/21</td>
<td>2</td>
<td>26</td>
<td>7-day</td>
</tr>
<tr>
<td>5/25</td>
<td>5</td>
<td>31</td>
<td>7-day</td>
</tr>
<tr>
<td>5/27</td>
<td>3</td>
<td>34</td>
<td>7-day</td>
</tr>
<tr>
<td>5/30</td>
<td>8</td>
<td>42</td>
<td>7-day</td>
</tr>
<tr>
<td>5/31</td>
<td>1</td>
<td>43</td>
<td>7-day</td>
</tr>
<tr>
<td>6/1</td>
<td>1</td>
<td>44</td>
<td>7-day</td>
</tr>
</tbody>
</table>

All potatoes in DE have accumulated 18 DSV’s or more by now. The threshold of 300 P-days was also exceeded yesterday, which would recommend initiating sprays for early blight. This will be important for growers with early blight susceptible varieties. This 300 P-day threshold was exceeded for potatoes that emerged on or before April 25.

Growers who do not want to rely only on the DSV calculations for scheduling fungicide applications should apply mancozeb (Dithane, Pencozeb, Manex II) or Bravo before plants canopy down the row and...
repeat on a 7-day schedule. Late blight has not been a problem here in Delaware for many years and unless you have seed from an unknown source, the risk of late blight is very low.

Management Strategies for Phytophthora Fruit Rot Control in Pickling Cucumbers -

Bob Mulrooney, Extension Plant Pathologist, University of Delaware, bobmul@udel.edu
and Ed Kee, Extension Vegetable Specialist, University of Delaware, kee@udel.edu

Phytophthora fruit rot can be a devastating disease of pickles on Delmarva. Last year’s wet season was a very favorable year for Phytophthora capsici on many crops. The fungus is soilborne and the overwintering oospores can remain viable in the soil for 10 years or more. Cultural practices that help control Phytophthora are (1) as long a rotation away from susceptible crops (tomatoes, peppers, eggplants, lima beans, cucurbits including pumpkins, summer and winter squash, watermelon, and cantaloupe) as possible, (2) plant only well-drained fields, (3) use as wide a row spacing as possible to allow drying and reduce humidity. Properly constructed raised beds can also be helpful as they keep vulnerable plants from saturated soil conditions. The most effective control measure that growers have available is to avoid planting in infested soil and limit the spread of the disease to clean fields. Fungicides have also been shown to provide some control if applied at the right time and good coverage is achieved. A combined approach of all available control methods is more effective than using just one control measure.

Recent work done in Michigan by Dr. Mary Hausbeck and her team over the past several seasons to control Phytophthora fruit rot has promise for us here in Delaware. We have relied on applications of Ridomil Gold or Ultra-Flourish in a band at planting followed by several applications of Acrobat or Gavel combined with a copper fungicide such as Champ or Kocide for fruit rot control. Their research is showing the best control under their conditions with three applications of Acrobat or Gavel when fruit are 1, 3, and 5 inches long. Under our conditions, fruit may size so quickly that only two sprays at 1 and 3 inch long fruit would be used here. Application of the fungicides is also very important. All the fungicides for fruit rot control which includes Acrobat, Gavel (zoxamide plus mancozeb), mancozeb (Dithane DF, Manzate, Penncozeb) and copper hydroxide (Champ, Kocide) are not systemic, so coverage of the fruit is very important if control is to be effective. It is not enough to just spray until the leaves are wet, you need enough pressure and/or air to drive the fungicide to the fruit. They have had good success with conventional spray rigs equipped with 8003 nozzles, spaced 20 in. apart operating at 60 psi, delivering 30 gal/A. Air-assisted sprayers with 4 nozzles spaced 60 in. apart, delivering 10 gal/A have also been demonstrated to be very effective.

Fungicide test plots and large demonstration plots have shown that several treatments have proven effective under varying amounts of disease pressure. As mentioned before, Acrobat 50 WP (6.4 oz/A) or Gavel 75DF (2 lb/A) are applied with 2 lbs. of Kocide or Champ when they are applied. They are getting slightly better control compared to the untreated check by alternating Gavel with Acrobat. Since Gavel contains mancozeb it has a 5 day pre-harvest interval (phi) which limits its use close to harvest. They were applying Gavel at the 1 and 3 in. stage and ending with Acrobat at the 5 in. size. There was no significant difference between all three sprays of either Acrobat or Gavel.

All that being said, we would recommend for Delaware growers that they choose their fields wisely following the non-chemical guidelines addressed earlier and applying preventative sprays of Acrobat 6.4 oz/A or Gavel at 2 lbs/A plus Champ DF or Kocide 2000 at 2 lbs/A when the fruit are 1 in. long and again at 3 in. long. If weather conditions are such that a spray at 5 in. is possible, it would be recommended as well.
Mefanoxam (Ridomil Gold or UltraFlourish) could also be used in a band over the row at planting when planting fields with a history of fruit rot and no or very little mefanoxam use in the past. We identified several populations of *Phytophthora capsici* in DE last season that are resistant or insensitive to mefanoxam. It would be logical to assume that if mefanoxam has been used to control *Phytophthora capsici* on pickles or any other susceptible crop in a field that the fungus may develop insensitivity over time. But, that does not always happen as we have seen in NJ where mefanoxam has been used exclusively for crown rot control in peppers and insensitivity has not developed. Resistance usually occurs over time, but not always. Rotating mefanoxam with other fungicides with different modes of action like Acrobat and Gavel will delay or prevent insensitivity from occurring.

Phytophthora Fruit Rot.

Bob’s article suggests two applications, perhaps three of an Acrobat 50WP (6.4 oz./A) or Gavel 75DF (2 lbs./A) plus Kocide or Champ (2 lbs./A) during the fruit enlargement stage has provided good control of *Phytophthora* in Michigan. The Acrobat/Kocide combination costs $14/acre/application, or $0.08 per bushel at 180 bushels/acre; the Gavel/Kocide combination costs $16/acre/application, or $0.09 per bushel at 180 bushels/acre. Two applications would cost $28 or $32/acre respectively; three applications would cost $42 or $48, respectively.

On a per bushel basis, again using 180 bushels as the estimated yield, two applications of the Acrobat/Kocide combination would cost $0.16 per bushel. Two applications of the Gavel/Kocide combination would cost $0.18 per bushel. Three applications of each combination would be $0.24 per bushel for Acrobat/Kocide; or $0.27 per bushel for Gavel/Kocide.

Adding the highest cost scenario, i.e., three applications of Gavel/Kocide, adds $48 of cost to the $209 basic variable costs mentioned in the first paragraph, for a total of $257 per acre, or $1.42 total variable costs per bushel.

If belly rot control (rhizoctonia) is required, adding two applications of Amistar at 5 oz/acre would add an additional $56 per acre, or $0.31 per bushel; and bring total variable costs to $313 per acre, or $1.73 per bushel for a 180 bushel crop.

We have also calculated fixed costs (equipment, harvesting, labor, etc.) to range from $0.60 to $1.00 per bushel, bringing the maximum costs of production up to somewhere between $2.33 to $2.73 per bushel.

Growers know their margin between price received and their costs. Fungicide investment is critical to profit, but often hard to predict which plantings will benefit the most from this investment, due to weather fluctuations, crop history, and other variables. The above discussion also presents decisions on the number of applications and whether to include belly rot control measures in addition to phytophthora control measures.

Economics of Phytophthora Control in Pickling Cucumbers - Ed Kee, Extension Vegetable Crops Specialist; kee@udel.edu

Bob Mulrooney’s excellent article on Phytophthora control opens the discussion on economic considerations. We figure variable costs for a 180 bushel/acre crop (seed, fertilizer, herbicide, bee rental, and irrigation fuel) totals $209 per acre without calculating any fungicide cost. At 180 bushels/acre, these costs add up to $1.16 per bushel. Seed is the largest component at $87/acre ($5,000 seeds @ 1.58/1000), or $0.48 per bushel.
The various choices can add $0.16 to as much as $0.55 cents per bushel. At a price of anywhere between $3.75 to $4.25 per bushel, a well-conceived approach to disease control can be a worthwhile investment. This is especially true when wet, warm weather conditions can trigger outbreaks of Phytophthora that cause acreage to be by-passed.

Field Crops

Field Crop Insects - Joanne Whalen, Extension IPM Specialist; jwhalen@udel.edu

Alfalfa.
Continue to sample all fields on a weekly basis for leafhopper adults and nymphs. Once fields are yellow, stand and yield loss has already occurred. We are starting to see an increase in nymphs which often cause damage very quickly. The treatment thresholds are 20 per 100 sweeps on alfalfa 3 inches or less in height, 50 per 100 sweeps in 4-6 inch tall alfalfa and 100 per 100 sweeps in 7-11 inch tall alfalfa. Baythroid, dimethoate, Mustang or Warrior will provide effective control.

Field Corn.
Continue to scout corn up to V-5 stage for cutworms. We continue to find cut plants and larvae feeding below the ground level. Under these conditions, a rescue treatment will only be effective if applications are made late in the day, you use 30 gallons of water per acre and materials are directed to the base of plants. A pyrethroid or Lorsban will provide control.

There have also been reports of grasshoppers feeding on small plants. A grasshopper treatment should be considered if you find 5-8 grasshoppers per square yard. Asana, Dimethoate, Lorsban, Furadan and Warrior will provide control, but multiple applications may be needed.

Continue to scout whorl stage corn for cereal leaf beetle, true armyworms and European corn borer. Be sure to carefully sample no-till fields for true armyworm where a grass cover or volunteer small grains were burned down at planting. The treatment threshold for armyworms in corn is 25% infested plants with larvae less than one-inch long. No controls will be needed for cereal leaf beetles until you find 10 beetles per plant and 50% of the plants exhibit damage. European corn borer control will not be needed until 50% of the planted are infested in irrigated fields and 80% of the plants are infested in dry land fields. Since corn is growing quickly, the best time for control will be just at pre-tassel or tassel emergence as long as larvae have not bored into the midribs of leaves.

Small Grains.
Continue to scout all fields for grass sawfly and armyworms. In both wheat and barley, the treatment threshold for sawflies is 2 per 5 foot of row innerspace or 0.4 per foot of row. The armyworm threshold is one per foot of row in barley and two per foot of row in wheat. If multiple pests are present in barley, your only control option is Lannate. In wheat, your options include Lannate, Mustang, or Warrior.

Soybeans.
Grasshopper and bean leaf beetle feeding continue to be found in seedling stage soybean fields. A treatment for bean leaf beetle will be needed from plant emergence to the second trifoliate when you find 2 beetles per foot of row and a 25% stand reduction. A pyrethroid, dimethoate or Lorsban will provide control. The treatment threshold for grasshoppers is 1 per sweep and 30% defoliation. Asana, Furadan, Lorsban, or Warrior will provide grasshopper control.

Field Crop Diseases - Bob Mulrooney, Plant Pathologist, University of Delaware

Wheat.
Several samples were received and I have had several phone calls about wheat that has turned almost white in the field. The affected areas are on knolls and other dry parts of the field in areas
of the state that have had little rain. It appears that the problem is the dry weather. One sample had some Rhizoctonia eyespot as well on the lower stems.

In New Castle County where there is still some green leaves left on later maturing varieties, I saw some tan spot in our variety plots. This is rather unusual, but shows the importance of rain during the grain fill period to favor disease development. These are unsprayed plots and it is unlikely that the disease will impact yield this late in the season. Tan spot looks like Septoria leaf spot caused by *Septoria nodorum*, but without the black fruiting bodies (pycnidia) of the fungus in the spots. It overwinters on old infected crop debris and control measures for Septoria controls tan spot as well. There are low levels of head blight or scab scattered about the state as well, mostly in northern areas.

Tanspot on Wheat

Postemergence Grass Control in Corn - *Mark VanGessel, Extension Weed Specialist; mjv@udel.edu*

There are a number of herbicides to control grasses postemergence in corn. These herbicides include the active ingredients nicosulfuron - Accent or Celebrity Plus; nicosulfuron plus rimsulfuron - Basis Gold, Steadfast, or Steadfast ATZ; or foramsulfuron - Option or Equip. Accent or Celebrity Plus will not control crabgrass, while the other products will only control small crabgrass (labels specify 1 to 2 inches).

Grain Marketing Highlights - *Carl German, Extension Crops Marketing Specialist; clgerman@udel.edu*

General Comments.

Corn, soybean and wheat old crop and new crop futures rallied limit moves on Tuesday morning this week, the first day back form the Memorial Day weekend. The rally was due to three primary reasons. First, China - the Chinese were said to be nearing settlement on their dispute with Brazil over rejected imports from Brazil or are they? As of this morning, the status of the rumors concerning South American shipments of soybeans to China is still not known. The Chinese, besides being suspected of wanting to renegotiate the price of bean shipments already booked from Brazil, are also wary of receiving diseased soybeans and are said to have rejected shipments on that basis, too. Here at home, commodity traders are hopeful that the U.S. may be able to pick up some of the Chinese soybean business.

Second, Weather - currently, the primary problem in the Midwest is not due to planting delays. The '04 crop went into the ground ahead of schedule for the most part. The problem at hand in the Corn Belt is the ponds that have formed in large areas for crops already planted. Estimates, heard on the grapevine, run anywhere from 2 million to 4 million acres of the '04 corn crop may be lost due to the ponding effect caused by too much rain in certain areas. If true, it is becoming more difficult to estimate a 10.4 billion bushel or better corn crop being produced in the U.S. this season. Further, yield complications for corn in the Midwest are likely to come from nitrogen leaching due to too much rain being encountered over the last two weeks. So far, what was being called 'ideal' growing conditions just two weeks ago, isn't looking so ideal at the present time. Weekly crop conditions reported by USDA were lowered for the current week as compared to last week.

Third, Funds - the funds amassed a huge liquidation of soybean futures contracts going into the holiday weekend, predisposing the likelihood that the soybean market is now oversold. It is reasonable to expect that the
funds will come back into the market buying both corn and soybean futures contracts.

Market Strategy.
Bear in mind that we are in volatile times, with the commodities markets being of no exception. Reports of too much rain, nitrogen leeching on acres planted and intended for corn, the possibility that some corn acres may be abandoned for soybeans (although not all that likely depending upon ground preparation that had occurred), and the likelihood that yield reductions are forthcoming in the production forecasts all portend to higher prices yet to come. We need to find out more about the extent of crop damage in the Corn Belt before we can ascertain expectations as to the extent of the current rally. Fundamentally, there appears to be enough reason to believe that these markets will work higher from their current levels. Therefore, it appears to be advisable to place a hold on further corn and soybean sales, at least until we get the next crop report on June 11th.

White Head Syndrome and Head Scab in Wheat
Richard W. Taylor, Extension Agronomist, University of Delaware; rttaylor@udel.edu *and Bob Mulrooney, Extension Plant Pathologist, University of Delaware; bobmul@udel.edu*

Now is a good time to scout your fields for the amount of head scab that has developed. One caution is that when the entire head is infected, scab can be easily confused with white head syndrome caused by damage to the main stem either by insect feeding or other agents. Photo 1 below may help you distinguish between the two. In scab that affects the entire head, the glume structures that enclose the wheat kernel appear more uniformly white or bleached of color than when the head has been partially clipped by insect feeding. In the latter case, if you closely examine the glumes, you will see green striations since at least some nutrients and food is usually able to move to the head through the injured stem.

Photo 1. Head scab (Fusarium head blight) on the left and two white heads caused by injury (insect feeding) to the wheat stem on the right (Photo by R. Taylor).

Another way to distinguish the two problems is to pull on the plant and see if the head easily snaps off (usually at a node where the injury occurred). To estimate the percentage of damage from each, walk across your field and check 50 to 100 random heads that are completely white to see if the head easily snaps off the plant. Keep track of the numbers to determine the percentage of white heads cause by scab or by white head syndrome. At the same time, you could stop in several areas and estimate the percentage of heads affected by scab, counting only those heads that have a portion of the head affected (See Photo 2). By estimating both the percentage of seed heads affected and the percentage of an individual head that is affected, you could come up with a rough estimate of the amount of damage to your field.

Photo 2. Head scab in wheat affecting the upper third of the panicle (Photo by R. Taylor).
When Calibration Goes Awry - Richard W. Taylor, Extension Agronomist, University of Delaware; rctaylor@udel.edu

The rash of storms that have rumbled across our area in recent days combined with rapidly maturing barley and wheat has made it easier to diagnose when your sprayer is not delivering a product as uniformly as you would like. Take for example the field shown below in Photos 1 to 3. One side of the boom used to apply nitrogen (N) was not working properly in this field. The result was an over-application of N that resulted in a distinct lodging pattern. When regular patterns appear in fields as seen in Photos 1 and 2, you can be pretty sure that the problem relates to something manmade, in this case a sprayer uniformity problem.

Although N is required for good grain yields, too much N can actually cost you in lost yield. When the crop severely lodges early in grain fill, many tillers are shaded so that they no longer can intercept the maximum available light and convert it into sugars, starches, and protein that becomes the grain you harvest. Seed size and yield are not the only factors affected since test weight and grain quality can be hurt.

If you see patterns in your field, be sure to check them out to see what may be causing the problem. Then, correct the problem so subsequent crops will have optimal management.

Photo 1. Lodging in soft red winter wheat caused by excessive application of nitrogen from a miscalibrated sprayer (Photo by R. Taylor).

Photo 2. Distinct patterns of lodging indicating a manmade causal agent (Photo by R. Taylor).

Photo 3. Although lodging is not severe at this point, indications are that additional lodging may occur due to a high N application rate (Photo by R. Taylor).

UPCOMING MEETINGS:

PESTICIDE APPLICATOR TRAINING & TESTING

The first day is training – 8:30 am - 4:30 pm. Training continues the morning of the second day, 8:30 am - noon.

Be sure to bring your Workbook! You don't have to register for training, but you must register for the exam. Call DDA (302-698-4500) one week in advance to register for the exam. The exam starts at 1:00 pm the second day. All exams are closed.
book!! Bring your calculator for the calibration questions.

Access the link below for everything you wanted to know about pesticide applicator training, certification, and recertification in Delaware.

http://www.udel.edu/pesticide/how_to.htm#whocert

Pesticide Container Recycling

In cooperation with the Agricultural Container Research Council (ACRC), the Pesticides Section provides an empty pesticide container recycling program in the State of Delaware. This program has collected and shredded for recycling, over 100,000 HDPE (high density polyethylene) plastic containers since its inception in 1993. For more information, please visit the Agricultural Container Research Council (ACRC) web site: http://www.acrecycle.org/.

Each container is closely inspected for cleanliness (they must be triple rinsed or equivalent), chipped and bagged for storage and transport. Container chips are combined with those collected in similar programs across the country and processed into pallets, park benches, new pesticide containers, or converted into fuel.

Containers are collected at the Sussex Conservation District, Maintenance Yard, Shortly Road, Georgetown, DE, and at the large commercial applicator sites. The Sussex Conservation District site is open 6 months out of the year and the dates and times for collections are:

- June 17, July 15, August 19, September 16, 2004

Collection hours are from 9:30 a.m. – 1:30 p.m

Weather Summary

http://www.rec.udel.edu/TopLevel/Weather.htm

Week of May 27 to June 2, 2004

Rainfall:
0.38 inches: May 28
0.30 inches: May 31
0.03 inches: June 1
Readings taken for the previous 24 hours at 8 a.m.

Air Temperature:
Highs Ranged from 83°F on June 2 to 72°F on May 29 & 30.
Lows Ranged from 67°F on May 28 to 53°F on May 30.

Soil Temperature:
73°F average.
(Soil temperature taken at a 2 inch depth, under sod)

Web Address for the U of D Research & Education Center:
http://www.rec.udel.edu

Compiled and Edited By:
Tracy Wootten
Sussex County Extension Agent - Horticulture
University of Delaware

Cooperative Extension Education in Agriculture and Home Economics, University of Delaware, Delaware State University and the United States Department of Agriculture cooperating. Distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Delaware Cooperative Extension, University of Delaware. It is the policy of the Delaware Cooperative Extension System that no person shall be subjected to discrimination on the grounds of race, color, sex, disability, age or national origin.